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Abstract
The quantum description of third harmonic generation can be formulated as an
eigenvalue problem for a third-order linear differential equation. We perform a
semiclassical study of this third-order equation, generalizing the familiar JWKB
theory for the second-order Schrödinger equation, and deriving explicit (albeit
approximate) formulas for the eigenvalues within this semiclassical context.
A central role in this analysis is played by a nonlinear complex canonical
transformation which permits a complete description of the classical motion
(generated by a complex polynomial Hamiltonian function) in the complexified
position and momentum planes.

PACS numbers: 03.65.Sq, 03.65.Ge, 03.65.−w

1. Introduction

The quantum description of third harmonic generation, an optical process whereby three
photons of angular frequency one interact in a nonlinear medium to yield a photon of angular
frequency three, can be formulated as an eigenvalue problem for a third-order linear differential
equation [1]. Although the calculation of the corresponding eigenvalues and eigenvectors can
ultimately be reduced to the diagonalization of a finite matrix [1, 2], explicit expressions
of these eigenvalues and eigenvectors are not known, but the existence of the differential
equation opens up the possibility of using semiclassical methods to obtain formulas which,
albeit approximate, are explicit.

In fact, there is a rigorous theory for the asymptotic solution of high-order differential
equations [3–5], but this theory is rather difficult to implement in practice. Specifically, there
is not a general and practical method to solve eigenvalue problems by Jeffreys–Wentzel–
Kramers–Brillouin (JWKB) techniques for differential equations of order higher than 2, but
rather a collection of results applicable to some classes of equations and systems. We mention
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the results compiled by Fedoryuk [6], the study of boundary value problems for third-order
equations by Strelitz [7], the three-level scattering systems solved by Joye and Pfister [8] and
Aoki et al [9], and the works of Dorey and Tateo [10, 11] and Dorey et al [12]. Of special
interest for our purposes is the development of connection formulas to track the behaviour
of the JWKB solutions through Stokes lines in the complex plane [13], and particularly
the observation made by Berk et al [14] that new Stokes lines were required for a consistent
treatment of equations of order higher than 2. Most recently Aoki et al [15–17] have developed
a general setting for the complete description of the Stokes geometry of high-order equations
via integral representations of the solutions, but again the practical application in cases like
ours is not immediate.

In our previous paper on third harmonic generation [1] we bypassed this problem: by
separating the two degrees of freedom of the classical real Hamiltonian that describes third
harmonic generation, we were able to perform a Bohr–Sommerfeld quantization of the classical
orbits. As a result of this study we found a complex canonical transformation that formally
related the separated classical and quantum equations through the standard quantization
rules. Drawing on these results, in this paper we study in depth this complex canonical
transformation, and show that it provides the clues for a JWKB study of the third harmonic
quantum equation. In fact, working within this semiclassical framework, we are able to derive
the same approximate formulas for the eigenvalues.

There has recently been an interest in the properties of classical Hamiltonian systems under
complexification of the canonical variables, usually with the procedure of setting x = x1 + ip2

and p = p1 + ix2, where (x1, p1) and (x2, p2) are pairs of standard real canonical variables.
Kaushal and Korsch [18] used this complexification to obtain a new class of two-dimensional
integrable systems; Kaushal and Singh [19] were able to find new complex invariants; and
most recently Kaushal and Parthasarati [20] investigated the ground state of some potentials
in the same framework of extended complex phase space. Complex canonical variables are
also used to represent normal modes [21], but perhaps the paper whose approach is closest
to ours is the study of the complex pendulum by Bender [22], in which the author makes
a detailed analysis of the classical paths in the complex coordinate plane of oscillators with
Hamiltonians H = p2 − (ix)N .

There are two main differences, however, between these earlier complexifications
and ours: firstly, our complex canonical transformation is nonlinear, leading from the
complicated (real) Hamiltonian to a simpler (complex) polynomial Hamiltonian for which
all the semiclassical equations can be solved explicitly; and secondly, this new, polynomial
Hamiltonian is not quadratic, but cubic in the new complex momentum (hence the third order
of the quantized differential equation), and therefore the complex velocity and momentum are
not proportional. We will show in due course the relevance of this fact for the JWKB
wavefunction. The organization of the paper is as follows. In section 2 we use the
Segal–Bargmann representation to derive the third-order linear differential equation for third
harmonic generation. Section 3 reviews the separation of degrees of freedom in the classical
Hamiltonian, highlighting the essential features of the corresponding phase map. We stress that
sections 2 and 3 not only summarize and clarify (for the reader’s benefit) the essentials of [1],
but also extend at several points the results therein. In section 4 we study the nonlinear complex
canonical transformation which relates the classical and quantum Hamiltonians through the
standard quantization rules, paying special attention to the description of the classical motion
in the complex coordinate and complex momentum planes. Section 5 is devoted to the
semiclassical theory, which we present as closely as possible to the familiar JWKB theory for
the second-order Schrödinger equation [23, 24]. Finally, we summarize our results and point
out an interesting line for future development in section 6.



Third harmonic generation: complex canonical transformation and JWKB solution 2613

2. Quantum theory of third harmonic generation

The Hilbert space for a boson in the Segal–Bargmann representation [25] is the space of entire
functions of the form

f (z) =
∞∑

n=0

cn√
n!

zn

(
z ∈ C,

∞∑
n=0

|cn|2 < ∞
)

(1)

with the scalar product defined by

〈g, f 〉 = 1

π

∫
R×R

d(Re z) d(Im z)g(z)f (z) e−|z|2 . (2)

In [1, 2] it is shown that the third harmonic generation effective Hamiltonian, usually
defined in terms of creation and annihilation operators in Fock space, can be represented by a
differential operator acting in the direct product of two copies of the Segal–Bargmann space.
More concretely, the third harmonic generation Hamiltonian H is a sum

H = H0 + gH1 (3)

of an unperturbed part H0 which describes two uncoupled harmonic oscillators of angular
frequencies one and three respectively, and a perturbation H1 whereby three photons of angular
frequency one yield a photon of angular frequency three. The strength of this perturbation is
given by the coupling constant g.

In the Segal–Bargmann space the action of the unperturbed Hamiltonian is given by the
partial differential operator

H0 = z1
∂

∂z1
+

1

2
+ 3

(
z2

∂

∂z2
+

1

2

)
(4)

with unperturbed eigenvalues and orthonormal eigenfunctions

E0 = n1 +
1

2
+ 3

(
n2 +

1

2

)
(n1, n2 = 0, 1, 2, . . .) (5)

ϕn1,n2(z1, z2) = z
n1
1 z

n2
2√

n1!n2!
(n1, n2 = 0, 1, 2, . . .) (6)

and the perturbation Hamiltonian is likewise represented by the partial differential operator

H1 = z2
∂3

∂z3
1

+ z3
1

∂

∂z2
. (7)

The key feature of this model from the physical point of view is the energy conservation. Since
the unperturbed Hamiltonian and the perturbation commute ([H0,H1] = 0), the problem can
be reduced to the diagonalization of the perturbation H1 restricted to the finite-dimensional
subspaces of constant unperturbed energy E0. There are three kinds of such subspaces, which
depend on a parameter κ (incidentally, only the case κ = 0 was considered in [1]): if �x�
denotes the greatest integer less than or equal to x and

k =
⌊n1

3
+ n2

⌋
(8)

then the eigenfunctions of H1 are polynomials of the form

pκ(z1, z2) = zκ
1

k∑
m=0

cmz
3(k−m)
1 zm

2 (κ = 0, 1, 2) (9)
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with unperturbed energies

E0 = 3k + 2 + κ (κ = 0, 1, 2). (10)

Equations (6), (7) and (9) show that the actions of the perturbation H1 within these subspaces
are given by (k + 1) × (k + 1) selfadjoint matrices

[
H

(κ)
1

]
whose only nonzero elements are

[
H

(κ)
1

]
i,i+1 = [

H
(κ)
1

]
i+1,i

=
√√√√i

3∏
m=1

(3k − 3i + m + κ) (i = 1, . . . , k). (11)

This explicit tridiagonal matrix representation generalizes for κ �= 0 the matrix given in [1],
and entails in particular that the eigenvalues are real, simple, and symmetrically distributed
around zero [1, 2].

These results can also be derived, with a similar effort, working with the second
quantization formalism in Fock space. The main advantage of the Segal–Bargmann
representation is that it permits the separation of the two degrees of freedom of the system,
arriving at a single ordinary differential equation for the perturbation eigenvalue problem
[1, 2]. For our purposes, the most convenient way to separate variables is the following
change of independent and dependent variables:

z = z1z
−1/3
2 (12)

pκ(z1, z2) = z
k+κ/3
2 Qκ(z) (13)

where Qκ(z) is zκ times a polynomial of degree k in z3. Substituting equations (12) and (13)
into the differential equation H1pκ = Epκ , or explicitly,(

z2
∂3

∂z3
1

+ z3
1

∂

∂z2

)
pκ(z1, z2) = Epκ(z1, z2) (14)

we arrive at a third-order ordinary differential equation for Qκ(z),

Q(3)
κ (z) − 1

3
z4Q′

κ(z) +
(
k +

κ

3

)
z3Qκ(z) = EQκ(z). (15)

Note that the change of variables (12)–(13) has been chosen so that the third-order linear
differential equation (15) is in ‘normal form’, i.e. with the second derivative missing. The
condition that Qκ(z) must be zκ times a polynomial of degree k in z3 will play a crucial role
in section 5.3.

We finish this section with a slight notational simplification. Hereafter we drop the label
κ and consider explicitly only the case κ = 0, i.e. in the rest of the paper we work with the
somewhat simpler equation

Q(3)(z) − 1
3z4Q′(z) + kz3Q(z) = EQ(z). (16)

The remaining two cases κ = 1 and κ = 2 can be recovered by making the replacements
k → k + 1/3 and k → k + 2/3 (respectively) into the final semiclassical expressions for the
eigenvalues.

3. Classical theory of third harmonic generation

The classical Hamiltonian function corresponding to the quantum operator defined by
equations (3), (4) and (7) is

Hc = 1

2

(
p2

1 + x2
1

)
+

3

2

(
p2

2 + x2
2

)
+

g

2

(
x3

1x2 − p3
1p2 + 3p1x

2
1p2 − 3p2

1x1x2
)

(17)
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π/2 π 3π/2 2π∼00
θ

Figure 1. Phase map of the perturbation Hamiltonian Hc,1(θ1, j1) for a fixed value of j2 = 3 +
2/3, which corresponds to κ = 0, k = 3 in the quantum case. The vertical dashed lines are
separatrices. Trajectories are drawn through the following (θ1, j1/j2) values: (0, 1/8), (0, 1/4),
(0, 3/8), (0, 1/2), (0, 5/8) and (0, 3/4) (constant trajectory marked by a dot), as well as the
symmetric trajectories with initial θ1 = π . The thick line highlights the trajectory through (0,
5/8), which is the preimage of the complex trajectory shown in figure 2.

where xi and pi are Cartesian coordinates and momenta. In [1] we have shown that in suitable
canonical coordinates (θ1, j1), (θ2, j2), this classical Hamiltonian function is given by

Hc = 3j2 + g6
√

3j
3/2
1 (j2 − j1)

1/2 cos θ1 (18)

where the canonical coordinate θ2 is cyclic and therefore the conjugate action j2 is a constant
of the motion, concretely one-third of the unperturbed energy. The nontrivial canonical
coordinates are the phase difference between the modes θ1 and its conjugate momentum j1,
and the perturbation Hamiltonian function is

Hc,1(θ1, j1) = 6
√

3j
3/2
1 (j2 − j1)

1/2 cos θ1. (19)

In [1] we also gave a detailed discussion of this Hamiltonian and its corresponding equations
of motion, including proofs of the classical counterparts of the properties of the eigenvalues
cited in the previous section, but for the purpose of the present paper it will be enough to
highlight some features of the phase map for the Hamiltonian (19) that we show in figure 1.
(Incidentally, the trajectories in figure 1 of [1] were drawn at equally-spaced values of the
perturbation energy; the trajectories in figure 1 of the present paper, as discussed below, are
drawn at equally-spaced, easily identifiable values of the action j1 at θ1 = 0 and π .)

First note that the periodic angular coordinate θ1 runs from 0 to 2π , and that the action j1

runs from 0 to j2. Therefore, the phase space is topologically a cylinder.
From equation (19) it is easy to see that the perturbation energy is bounded by

− 27

8
j 2

2 � E � 27

8
j 2

2 . (20)

The trajectories in the θ1 interval (π/2, 3π/2) have negative energy, the vertical separatrices
at θ1 = π/2 and θ1 = 3π/2 correspond to zero energy, and the symmetric trajectories in the
θ1 interval (0, π/2) ∪ (3π/2, 2π) have positive energy.

In figure 1 we have drawn the trajectories through the following (θ1, j1) values:
(0, j2/8), (0, j2/4), (0, 3j2/8), (0, j2/2), (0, 5j2/8) and (0, 3j2/4) (constant trajectory for
which the maximum energy is reached, marked by a dot), as well as the symmetric trajectories
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with the same initial values of j1, initial θ1 = π , and, consequently, opposite energies. For
concreteness and due to this symmetry of the phase map we will focus on the basin surrounding
the constant trajectory (0, 3j2/4), and use the corresponding innermost oval for our graphical
illustrations in the next section, which goes through (0, 5j2/8).

4. Complex canonical transformation

At this point it is a natural question whether there exists a direct connection between the
result of the quantum separation, i.e. the differential equation (16), and the result of the
classical separation, i.e. the perturbation Hamiltonian function (19). However, this is indeed
the case: in [1] we introduced the following transformation to new classical but complex
variables (X, P ):

X = eiθ1/3(3j1)
1/2(j2 − j1)

−1/6 (21)

P = e−i(θ1/3+π/2)(3j1)
1/2(j2 − j1)

1/6 (22)

which leads to the same classical Hamiltonian expressed as a complex function

Hc,1 = −iP 3 − i

3
X4P + j2X

3. (23)

If we write this Hamiltonian function in symmetrized form, substitute the classical unperturbed
energy E0 = 3j2 in terms of the quantum unperturbed energy E0 = 3k + 2, and quantize
formally, i.e. if in the expression

Hc,1 = −iP 3 − i

6
(X4P + PX4) +

(
k +

2

3

)
X3 (24)

we apply the usual quantization rules

X → z (25)

P → −i
d

dz
(26)

and act on Q(z) with the resulting operator, we recover the left-hand side of equation (16). As
a necessary preparation for the semiclassical study of equation (16), we devote this section to
a more detailed study of the transformation defined by equations (21)–(22).

First note that the transformation (21)–(22) is complex canonical, in the sense that
∂X

∂θ1

∂P

∂j1
− ∂X

∂j1

∂P

∂θ1
= 1 (27)

and that the inverse transformation is given by

j1 = i

3
XP (28)

θ1 = − i

2
ln

[(
X

P

)3 (
ij2 +

PX

3

)]
. (29)

(Of course, this inverse transformation is also complex canonical.)
Geometrically, equation (21) maps the (θ1, j1) phase space onto the sector 0 � arg X �

2π/3 of the complex X plane (the shaded region in figure 2(c)), where arg X = 0 has to be
identified with arg X = 2π/3.

Likewise, equation (22) maps the (θ1, j1) phase space onto the finite sector −7π/6 �
arg P � −π/2, |P | � |Pmax| = 3(j2/4)2/3 of the complex P plane (the shaded region in
figure 2(d )), where arg P = −7π/6 has to be identified with arg P = −π/2.
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(a)

(c)

(b)

(d)

Figure 2. Image of the complex canonical transformation from the real (θ1, j1) canonical variables
to the complex (X, P ) variables defined by equations (21) and (22) respectively. Figures 2(a)
and (b) show the images in the complex X and P planes of the trajectory through the point
(θ1, j1) = (0, 5j2/8) in figure 1 (the innermost oval around the constant trajectory). The shaded
areas in figures 2(c) and (d ) represent the images of the (θ1, j1) phase space, where arg X = 0
is identified with arg X = 2π/3 and arg P = −7π/6 is identified with arg P = −π/2. The dots
in these two figures mark the turning points at which the first-order semiclassical wavefunction
diverges (cf section 5.2, where the turning points are formally defined); the oval in figures 2(a) and
(c) traversed in the positive sense is the integration path used in equation (55).

Note that not all pairs of points (X, P ) in the respective shaded areas are formed by the
images of a point (θ1, j1) in the phase space of figure 1 (for example, for j1 to be real there
is a necessary condition that arg X + arg P = −π/2). The complex canonical condition (27),
however, ensures that if we start from an initial value (X(0), P (0)) which is the image of a
point (θ1(0), j1(0)), and integrate the complex Hamilton equations derived from the complex
Hamiltonian (23),

Ẋ(t) = −3iP(t)2 − i

3
X(t)4 (30)

Ṗ (t) = −3j2X(t)2 +
4i

3
P(t)X(t)3 (31)

then the whole trajectory (X(t), P (t)) is the image by equations (21) and (22) of (θ1(t), j1(t))

or, conversely, the latter trajectory can be recovered from the former by the inverse
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transformation (28) and (29). Likewise, the action integrals over both trajectories are equal∮
j1 dθ1 =

∮
P dX. (32)

Figures 2(a) and (b) show the images in the complex X and P planes, respectively, of
the trajectory through the point (θ1, j1) = (0, 5j2/8) in figure 1 (the innermost oval around
the constant trajectory). The image in the X plane is itself an oval, traversed once clockwise
in a period. The image in the P plane is also a closed curve: the arc in the plot is traversed
twice in opposite senses. Also note that the ends of the arc are the points most distant from
the origin, and precisely at a distance |Pmax|, (in the case of the figure, where j2 = 3 + 2/3,

|Pmax| ≈ 2.83). These same images are also plotted in figures 2(c) and (d ), although in the
latter case the scale makes it difficult to see the shape. In both cases the parts of the curves
outside the shaded areas have to be understood as folded by periodicity over the identified ray
into the other edge of the shaded area. (We have kept them continuous because it is more
convenient for the discussion in the next section, where the dots, which mark the turning
points, are defined.)

5. Semiclassical theory of third harmonic generation

Our study of the complex canonical transformation in the previous section has prepared us
to deal with the semiclassical theory of the quantum third harmonic generation equation (16)
derived in section 2. We will follow as closely as possible the lead of the familiar JWKB
theory for the second-order Schrödinger equation, according to the following layout: first
we will scale equation (16) to put it in suitable form for subsequent calculations; then, in
section 5.2, we will discuss the form of the JWKB wavefunction for a third-order equation,
drawing attention to the modified definition of turning points; in section 5.3 we will solve the
characteristic equation and find the turning points for equation (16); and finally, in section 5.4,
we will use these results to set up and evaluate the quantization condition.

5.1. Scaling

Our semiclassical parameter will be 1/k or, in other words, the JWKB expansions will be
large k expansions, which by equation (8) physically correspond to a large number of photons.
Therefore, we scale the coordinate z and the energy E in equation (16) by suitable powers of
k so that the derivatives are paired with like powers of k−1. The appropriate scaling is

z = k1/3x (33)

ψ(x) = Q(z) (34)

E = k2� (35)

and the scaled quantum equation is

ψ(3)(x) − k2

3
x4ψ ′(x) + k3(x3 − �)ψ(x) = 0. (36)

We mention that this scaling is the reason to introduce the typographical distinction with the
complex X coordinate (which corresponds to the variable z) of section 4. Hereafter, whenever
we refer to features in figure 2, it is to be understood that the suitable unscaling has been
performed.
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5.2. The form of the JWKB wavefunction

The essence of the semiclassical, Liouville–Green, or JWKB approximation [26] is to write
the wavefunction in exponential form

ψ(x) = exp

[
ik
∫ x

p(s) ds

]
(37)

and subsequently expand the integrand as an asymptotic power series in k−1

p(x) = p0(x) + k−1p1(x) + k−2p2(x) + · · · . (38)

This expansion is substituted into the differential equation; terms with equal powers of k are
collected, and the resulting equations for the pi(x) are solved recursively.

By substituting the exponential form of the wavefunction (37) into the scaled differential
equation for third harmonic generation (36), we find that the unknown function p(x) must
satisfy the exact equation

k3
[
x3 − � − i

3
x4p(x) − ip(x)3

]
− 3k2p(x)p′(x) + ikp′′(x) = 0. (39)

In turn, substitution of the asymptotic expansion (38) into equation (39) shows that the zeroth-
order term satisfies the characteristic equation

x3 − � − i

3
x4p0(x) − ip0(x)3 = 0 (40)

and that the remaining terms can be written as explicit functions of p0(x) and its derivatives.
We defer momentarily the solution of this characteristic equation and proceed to the calculation
of the next term p1(x), which can be written in at least two equivalent ways [6]:

p1(x) = i
p0(x)p′

0(x)

p0(x)2 + (x4/9)
(41)

= i
d

dx

[
ln
√

p0(x)2 + (x4/9)
]

− i
2x3

x4 + 9p0(x)2
. (42)

Note that, in contrast to second-order equations, here the whole term p1(x) is not a total
derivative of a logarithm. Using the last form, which is closer to the well-known expression
for second-order equations, we find that the first-order JWKB solution to the differential
equation (36) can be written in the form

ψJWKB(x) = 1√
p0(x)2 + (x4/9)

exp

[∫ x
(

ikp0(s) +
2s3

s4 + 9p0(s)2

)
ds

]
(43)

where p0(x) is a solution of the characteristic equation (40). Pursuing the analogy with
the familiar theory for second-order equations, we remark that the JWKB wavefunction (43)
diverges at the points where the argument of the square root vanishes,

p0(x)2 +
x4

9
= 0. (44)

These points are called the turning points of the JWKB solution, and their physical
interpretation is simple: they are the points where the complex velocity vanishes, cf
equation (30). Note that in the second-order theory, where the turning points are defined
by the condition p0(x) = 0, velocity and momentum are proportional, which is no longer true
for the Hamiltonian (23).
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5.3. Solutions of the characteristic equation and turning points

We calculate first the turning points which, as we have discussed in the preceding section,
are the pairs of values (x, p) that satisfy the characteristic equation (40) and the zero velocity
condition (44). That is to say, we have to find the solution of the system of polynomial
equations

x3 − � − i

3
x4p − ip3 = 0 (45)

− i

3
x4 − i3p2 = 0. (46)

This system can be solved explicitly as a function of the scaled energy �, and we find that
there exist 12 turning points given by

x3 = 27

4

(
−1 ±

√
1 +

8

27
�

)
(47)

p = i

3
x2 (48)

and

x3 = 27

4

(
1 ±

√
1 − 8

27
�

)
(49)

p = − i

3
x2 (50)

where in both cases the three cubic roots of each of the double signs are valid. These points
have been marked by dots in the complex X and P planes of figures 2(c) and (d ).

We finally turn to the solution of the characteristic equation (40). This is a cubic equation
in p and therefore the three solutions can be written in terms of radicals [27]. Since the
asymptotic behaviours of these roots are

p ∼ ix2

√
3
, − ix2

√
3
, −3i

x
as x → +∞ (51)

and, as we pointed in section 2, we are ultimately interested in solutions ψ(x) which are
polynomials of degree 3k in x, the correct root p0(x) is identified by

p0(x) ∼ −3i

x
as x → +∞. (52)

Consequently, if we denote

r(x) =


√(

x4/3

3

)3

−
(

x3 − �

2

)2

− i

(
x3 − �

2

)
1/3

(53)

where the principal determination of the roots is understood, then

p0(x) = r(x) − (x4/9)

r(x)
. (54)

5.4. Quantization condition

As we mentioned in the Introduction, there is not a simple and general method to formulate
quantization conditions (or, equivalently, to impose suitable boundary conditions) for JWKB



Third harmonic generation: complex canonical transformation and JWKB solution 2621

solutions of differential equations of order higher than two. We also mentioned the recent work
of Aoki et al as particularly promising [15–17], which is well-defined for ordinary differential
equations with polynomial coefficients (as is the case of the third harmonic generation equation
(36)), although its practical implementation is not immediate.

We follow again the pattern of the usual JWKB theory for second-order equations, and
impose the quantization condition for equation (36) in the form∮

ψ ′(x)

ψ(x)
dx = ik

∮
p(x) dx = 2π in (n = 0, . . . , �k/2�) (55)

where the contour integrals are taken along the complex classical trajectory of figure 2(c) but
traversed in the positive sense (which in this case is opposite to the classical motion).

We will work consistently to order k−1, and therefore replace in equation (55) the
wavefunction ψ by the JWKB equation (43). It is elementary to check that the last term
in the expression of p1(x) given in equation (42) can be written exactly as

−i
2x3

x4 + 9p0(x)2
= 2

3
p0(x) − 2

3
�

∂p0(x)

∂�
+

i

3

∂(p0(x)4)

∂�
(56)

so that working to order k−1 and using the notation

J (�) = 1

2π

∮
p0(x) dx (57)

the quantization condition (55) can be written as

kJ (�) +

[
−1

2
+

2

3
J (�) − 2

3
�J ′(�) +

i

6π

∂

∂�

∮
p0(x)4 dx

]
+ O(k−1) = n (58)

where the first term in the bracket is the result of the integration of the derivative of the
logarithmic term in equation (42), and the prime denotes derivative with respect to �. At first
sight it seems difficult to solve this condition for � as an explicit function of n. To do so we
use a result, which can be checked by series expansion in �:

i

2π

∂

∂�

∮
p0(x)4 dx = −2�J ′(�). (59)

Substituting equation (59) into equation (58), the latter can be rewritten as

J (�)

(
1 +

2

3k

)
− 4�

3k
J ′(�) + O(k−2) = 1

k

(
n +

1

2

)
(60)

or using backwards a Taylor expansion

J

(
�

(
1 +

2

3k

)−2
)

+ O(k−2) =
(
n + 1

2

)
(
k + 2

3

) . (61)

Therefore we have reduced the problem to the evaluation of the integral (57), which we do in
the form of a power series to facilitate the inversion.

To this aim we return to figure 2(c). Note that, again in contrast to the usual JWKB
theory for second-order equations, here the relevant turning points do not lie on the trajectory
but inside the domain limited by it. These two turning points inside the classical path are
given by

x± = 3

22/3

(
1 ±

√
1 − 8

27
�

)1/3

(62)

which are branch points of the square root in the definition of r(x) (cf equation (53)). When
the scaled energy � increases towards its maximum value 27/8, the turning points coalesce
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towards x+ = x− = 3 × 2−2/3, which corresponds to the constant trajectory (0, 3/4) in
figure 1. We take this limit as an expansion centre by introducing a parameter λ through

� = 27

8
(1 − λ). (63)

Next, we deform the integration path to the two segments above and below the cut between
the turning points, and parameterize the integral (57)

J (λ) = 1

π
Re

[
(x− − x+)

∫ 1

0
p0(x+(1 − s) + x−s) ds

]
. (64)

Then we substitute equation (63) into equations (53), (54) and (62), and these equations in
turn into the parameterized expression for the action integral (64), expand the right-hand side
as a power series in λ and integrate term by term. Thus we can calculate as many terms as
desired of the expansion of the action, the lowest four of which are

J (λ) =
√

3

4
√

2

(
λ +

31

144
λ2 +

6001

62 208
λ3 +

2988 055

53 747 712
λ4 + · · ·

)
. (65)

And now we reverse this series to obtain λ(J ), and use equation (63) to find the convergent
power series for �(J ), the inverse function of the function J (�) defined by equation (57):

�(J ) = 27

8

(
1 − 4

√
2

3
J +

62

27
J 2 +

235

729
√

6
J 3 +

88 315

472 392
J 4 + · · ·

)
. (66)

Equipped with this result, it is straightforward to solve the implicit quantization condition
(61): just make in equation (66) the replacements

� → �

(
1 +

2

3k

)−2

(67)

J → n + 1
2

k + 2
3

. (68)

Finally, the relation E = k2� between the scaled and unscaled eigenvalues leads us to the
explicit semiclassical formula

E = 27

8

(
k +

2

3

)2
(

1 − 4

√
2

3
Jn +

62

27
J 2

n +
235

729
√

6
J 3

n +
88 315

472 392
J 4

n + · · ·
)

(69)

where

Jn = n + 1
2

k + 2
3

(n = 0, 1, . . . , �k/2�). (70)

As a consistency check, we point out that this result coincides with the series obtained by a
Bohr–Sommerfeld quantization of the (θ1, j1) orbits in [1], where numerical examples of its
accuracy are given.

We would like to stress that the derivation in this section has been done entirely within the
semiclassical framework, without any appeal to the correspondence principle, and all features
of equation (69) come from a consistent application of the quantization condition (55).
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6. Summary

Except for some differential equations whose solutions admit integral representations, there are
few third-order differential equations for which a semiclassical treatment can be carried out
in full. In our previous work on third harmonic generation we used the Segal–Bargmann
representation of quantum mechanics to show that this process can be classified as an
eigenvalue problem for a linear third-order differential equation. The key point here is
the introduction of a new coordinate z = z1z

−1/3
2 , which is a ratio of adequate powers of the

Segal–Bargmann variables that describe each mode—so that, in effect, z carries information
on the difference between the phases of the oscillators—and permits the separation of the two
degrees of freedom. Likewise, the classical Hamiltonian for third harmonic generation can be
separated into two one-dimensional problems, and in this case the appropriate coordinates are
precisely the phase difference θ1 and its conjugate momentum. In an attempt to find a direct
connection between these quantum and classical descriptions, we also found a nonlinear
complex canonical transformation that allowed us to quantize the new complex classical
Hamiltonian function with the standard quantization rules and recover the linear third-order
differential equation.

In this paper we have made a closer study of this complex canonical transformation, which
in turn led us to an explicit semiclassical treatment of the quantum third-order differential
equation. The essential feature of the complex canonical transformation is that, for correct
initial values of the complexified variables, all the dynamics can be followed in the complex
X and P planes with the complexified Hamiltonian, and the inverse (also complex canonical)
transformation maps it to the original, real trajectories.

Having at our disposal a description of the classical motion in the complex X plane, we
have performed the semiclassical study of the quantum third-order differential equation by
following, as closely as possible, the lead furnished by the familiar JWKB theory for the
Schrödinger equation. We have discussed the form of the first-order JWKB wavefunction,
showing that the zeroth-order term involves the solution of a polynomial equation (the
characteristic equation) and that the turning points have to be defined as points of zero complex
velocity, not of zero complex momentum (in the Schrödinger equation velocity and momentum
are proportional and both definitions are equivalent). Both the polynomial equation for the
zeroth-order term p0(x) and the system of polynomial equations to find the turning points
can be solved in closed form, which allowed us to implement the quantization condition by
evaluating the action integral along the trajectory in the complex X plane.

As an especially interesting topic for future research we would like to mention the explicit
tracking of the JWKB wavefunction across the Stokes graph following the ideas put forward
by Berk et al [14] and developed by Aoki et al [15–17]. More concretely, these authors
have developed a formalism valid in general for linear differential equations with polynomial
coefficients but, because of the structure of their equations, the practical implementation in
concrete cases has been limited to equations where the polynomial coefficients have degree of
at most two. We consider an interesting problem to see if their ideas can be recast in a form
that can be easily applied to the differential equation for third harmonic generation, where the
polynomial coefficients have degrees up to four.
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